Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Toxins (Basel) ; 11(1)2019 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-30634620

RESUMO

The recombinant antibody fragments generated against the toxic components of scorpion venoms are considered a promising alternative for obtaining new antivenoms for therapy. Using directed evolution and site-directed mutagenesis, it was possible to generate a human single-chain antibody fragment with a broad cross-reactivity that retained recognition for its original antigen. This variant is the first antibody fragment that neutralizes the effect of an estimated 13 neurotoxins present in the venom of nine species of Mexican scorpions. This single antibody fragment showed the properties of a polyvalent antivenom. These results represent a significant advance in the development of new antivenoms against scorpion stings, since the number of components would be minimized due to their broad cross-neutralization capacity, while at the same time bypassing animal immunization.


Assuntos
Anticorpos Neutralizantes/imunologia , Neurotoxinas/imunologia , Venenos de Escorpião/imunologia , Anticorpos de Cadeia Única/imunologia , México
2.
Toxicon ; 119: 52-63, 2016 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-27212628

RESUMO

New approaches aimed at neutralizing the primary toxic components present in scorpion venoms, represent a promising alternative to the use of antivenoms of equine origin in humans. New potential therapeutics developed by these approaches correspond to neutralizing antibody fragments obtained by selection and maturation processes from libraries of human origin. The high sequence identity shared among scorpion toxins is associated with an important level of cross reactivity exhibited by these antibody fragments. We have exploited the cross reactivity showed by single chain variable antibody fragments (scFvs) of human origin to re-direct the neutralizing capacity toward various other scorpion toxins. As expected, during these evolving processes several variants derived from a parental scFv exhibited the capacity to simultaneously recognize and neutralize different toxins from Centruroides scorpion venoms. A sequence analyses of the cross reacting scFvs revealed that specific mutations are responsible for broadening their neutralizing capacity. In this work, we generated a set of new scFvs that resulted from the combinatorial insertion of these point mutations. These scFvs are potential candidates to be part of a novel recombinant antivenom of human origin that could confer protection against scorpion stings. A remarkable property of one of these new scFvs (ER-5) is its capacity to neutralize at least three different toxins and its complementary capacity to neutralize the whole venom from Centruroides suffusus in combination with a second scFv (LR), which binds to a different epitope shared by Centruroides scorpion toxins.


Assuntos
Testes de Neutralização , Venenos de Escorpião/química , Toxinas Biológicas/toxicidade , Sequência de Aminoácidos , Animais , Evolução Molecular Direcionada , México , Homologia de Sequência de Aminoácidos , Ressonância de Plasmônio de Superfície , Toxinas Biológicas/genética , Toxinas Biológicas/imunologia
3.
J Mol Biol ; 423(3): 337-50, 2012 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-22835504

RESUMO

Excellent results regarding improved therapeutic properties have been often obtained through the conversion of a single-chain variable fragment (scFv) into a noncovalent dimeric antibody (diabody) via peptide linker shortening. We utilized this approach to obtain a dimeric version of the human scFv 6009F, which was originally engineered to neutralize the Cn2 toxin of Centruroides noxius scorpion venom. However, some envenoming symptoms remained with diabody 6009F. Diabody 6009F was subjected to directed evolution to obtain a variant capable of eliminating envenoming symptoms. After two rounds of biopanning, diabody D4 was isolated. It exhibited a single mutation (E43G) in framework 2 of the heavy-chain variable domain. Diabody D4 displayed an increase in T(m) (thermal transition midpoint temperature) of 6.3°C compared with its dimeric precursor. The importance of the E43G mutation was tested in the context of the human scFv LR, a highly efficient antibody against Cn2, which was previously generated by our group [Riaño-Umbarila, L., Contreras-Ferrat, G., Olamendi-Portugal, T., Morelos-Juárez, C., Corzo, G., Possani, L. D. and Becerril, B. (2011). J. Biol. Chem.286, 6143-6151]. The new variant, scFv LER, displayed an increase in T(m) of 3.4°C and was capable of neutralizing 2 LD(50) of Cn2 toxin with no detectable symptoms when injected into mice at a 1:1 toxin-to-antibody molar ratio. These results showed that the E43G mutation might increase the therapeutic properties of these antibody fragments. Molecular modeling and dynamics results suggest that the rearrangement of the hydrogen-bonding network near the E43G mutation could explain the improved functional stability and neutralization properties of both the diabody D4 and scFv LER.


Assuntos
Fragmentos Fc das Imunoglobulinas , Cadeias Pesadas de Imunoglobulinas , Venenos de Escorpião/imunologia , Anticorpos de Cadeia Única , Sequência de Aminoácidos , Animais , Anticorpos Neutralizantes , Afinidade de Anticorpos , Humanos , Fragmentos Fc das Imunoglobulinas/química , Fragmentos Fc das Imunoglobulinas/genética , Fragmentos Fc das Imunoglobulinas/imunologia , Cadeias Pesadas de Imunoglobulinas/química , Cadeias Pesadas de Imunoglobulinas/genética , Cadeias Pesadas de Imunoglobulinas/imunologia , Camundongos , Simulação de Dinâmica Molecular , Testes de Neutralização , Ligação Proteica/imunologia , Estrutura Terciária de Proteína , Venenos de Escorpião/química , Anticorpos de Cadeia Única/química , Anticorpos de Cadeia Única/genética , Anticorpos de Cadeia Única/imunologia , Ressonância de Plasmônio de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...